Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2012

Examination: First Year Semester I

Course Code: FEC105 and Course Name: Basic Electrical & Electronics Engineering

Time: 1 hour Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Mesh is a closed loop
Option A:	that contains many loops
Option B:	that contains two loops
Option C:	that doesn't contain any other loop
· · · · · · · · · · · · · · · · · · ·	that is complex loop
Option D:	that is complex loop
Q2.	Kirchhoff's Voltage & current laws are applied respectively in
Option A:	Only Mesh Analysis
Option B:	Only Nodal Analysis
Option C:	Mesh & Nodal Analysis
Option D:	Nodal & Mesh Analysis
Option D.	110ddi & 111con / maryoro
Q3.	Rectifier is an electronics device convert
Option A:	Ac into DC
Option B:	DC into AC
Option C:	Pulsating DC into DC
Option D:	Pulsating DC into AC
Q4.	Internal resistance of an Ideal current source is
Option A:	Infinite
Option B:	negative
Option C:	Zero
Option D:	Non Zero
Q5.	Calculate Equivalent resistance for given network if all resistors having equal
	value of 10Ω
	$R_1 \geqslant R_2 \geqslant R_3 \geqslant R_4 \geqslant$
	(b)
Option A:	2.5Ω

	Examination 2020 under cluster 9 (FAIVIT)
Option B:	5 Ω
Option C:	40Ω
Option D:	100 Ω
Q6.	In Two wattmeter method of 3Φ power measurement active power is given by
Option A:	W_1+W_2
Option B:	W_1 - W_2
Option C:	W_1+2W_2
Option D:	W_{1} -3 W_{2}
Q7.	Calculate RAB
	A ————————————————————————————————————
	4Ω
	4Ω \geqslant 8Ω
	6Ω
	}
	8Ω \geqslant 4Ω
	В
Option A:	3.67 Ω
Option B:	5.67 Ω
Option C:	7.67Ω
Option D:	9.67Ω
Q8.	Super Mesh is formed when
Option A:	only current source is present in a independent branch
Option B:	only current source is present in a common branch
Option C:	only voltage source present in a common branch
Option D:	only voltage source present in a independent branch
00	In Common Emitten configuration of transistan output & input ourments and
Q9.	In Common Emitter configuration of transistor output & input currents are related as
Option A:	$I_{c} = I_{B/} \beta$
Option B:	$I_{c}=\beta I_{B}$
Option C:	I_{c} = β / I_{B}
Option D:	$I_B = \beta I_C$
1	
Q10.	What is amplitude, frequency if equation is e=25 sin(314t)
Option A:	25V, 50 Hz
Option B:	17.67 V, 50 Hz
Option C:	25V,60Hz
Option D:	17.67 V, 60Hz
Q11.	For parallel circuit impedances Z1=6+j8, Z2=8-6j of individual branches What is

equivalent Impedance
5+2j
1+2j
7+1j
7-1j
' -1
Which Circuit never consumes the power
Purely resistive
Inductive or Series RL
Purely Capacitive
Capacitive or Series RC
In Parallel Resonance the Impedance Z is
R
L/CR
C/RL
R/LC
Parallel Resonance is
Voltage Magnification Circuits
Current Magnification Circuits
Current Reduction Circuits
Voltage Reduction Circuits
Power factor in series Resonance is
Zero
one
Less than one
Greater than one
What is Phase Sequence in 3 Φ system
RBY
YBR
BYR
RYB
In star connected 3 Φ load Line Voltage VL is =
$\sqrt{3} \text{ V}_{\text{Ph}}$
$V_{ m Ph}$
1
$\sqrt{3}$ VPh
$\sqrt{2}$ V _{Ph}
In Delta connected load
Line & Phase Voltages are Equal

Option B:	Line & Phase Currents are Equal
Option C:	Phase Voltage & Phase Currents are Equal
Option D:	LineVoltage & Line Currents are Equal
Q19.	Power in Star connected load is equal to
Option A:	Power in Delta connected load
Option B:	Three times the Power in Delta connected load
Option C:	One Third of Power in Delta connected load
Option D:	Two times the Power in Delta connected load
Q20.	Transformar converts input AC signal into
Option A:	DC signal
Option B:	AC signal with change in Voltage or Currents with Keeping constant Frequency.
Option C:	AC signal with change in Voltage or Currents with variable Frequency.
Option D:	Constant Signal
Q21.	For given Voltage Rating 440 V/230V What is type of Transformer
Option A:	Step down
Option B:	Step up
Option C:	isolated
Option D:	Auto
Q22.	A role of slip ring in a Ac generator
Option A:	Power transmission
Option B:	Allow electrical contact with brushes
Option C:	Not allow electrical contact with brushes
Option D:	For rotation of armature
Q23.	Open Circuit Test on Transformer is used to Calculate
Option A:	Copper Loss
Option B:	Iron Loss
Option C:	Both Copper Loss &Iron Loss
Option D:	Full load Currents
Q24.	Dc Generator converts
Option A:	Mechanical Energy into Electrical Energy
Option B:	Electrical Energy into Mechanical Energy
Option C:	Electrical Energy into Solar Energy
Option D:	Mechanical Energy into Solar Energy
Q25.	Role of Commutator in motor is to
Option A:	Flow the current in uni-direction in rotor winding
Option B:	Flow the current in bi-direction in rotor winding
Option C:	No flow of Current in rotor winding
Option D:	Flow of Current in all direction